A one-dimensional inverse problem in composite materials: Regularization and error estimates

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nonhomogeneous Backward Heat Problem: Regularization and Error Estimates

We consider the problem of finding the initial temperature, from the final temperature, in the nonhomogeneous heat equation ut − uxx = f(x, t), (x, t) ∈ (0, π)× (0, T ), u(0, t) = u(π, t) = 0, (x, t) ∈ (0, π)× (0, T ). This problem is known as the backward heat problem and is severely ill-posed. Our goal is to present a simple and convenient regularization method, and sharp error estimates for ...

متن کامل

A Cauchy Problem for Helmholtz Equation : Regularization and Error Estimates

In this paper, the Cauchy problem for the Helmholtz equation is investigated. It is known that such problem is severely ill-posed. We propose a new regularization method to solve it based on the solution given by the method of separation of variables. Error estimation and convergence analysis have been given. Finally, we present numerical results for several examples and show the effectiveness ...

متن کامل

Regularization and Hölder Type Error Estimates for an Initial Inverse Heat Problem with Time-dependent Coefficient

This paper discusses the initial inverse heat problem (backward heat problem) with time-dependent coefficient. The problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. Two regularization solutions of the backward heat problem will be given by a modified quasi-boundary value method. The Hölder type error estimates between the regularization...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematical Modelling

سال: 2015

ISSN: 0307-904X

DOI: 10.1016/j.apm.2015.01.004